Higgs Physics at the LHeC

 LHeC, a Higgs Factory
B.Mellado

University of the Witwatersrand

On behalf of the LHeC Study Group

EU-Italy-Russia@Dubna Round Table, 04/03/14

CERN Referees

Ring Ring Design
Kurt Huebner (CERN)
Alexander N. Skrinsky (INP Novosibirsk)
Ferdinand Willeke (BNL)
Linac Ring Design
Reinhard Brinkmann (DESY)
Andy Wolski (Cockcroft)
Kaoru Yokoya (KEK)
Energy Recovery
Georg Hoffstaetter (Cornell)
Ilan Ben Zvi (BNL)
Magnets
Neil Marks (Cockcroft)
Martin Wilson (CERN)
Interaction Region
Daniel Pitzl (DESY)
Mike Sullivan (SLAC)
Detector Design
Philippe Bloch (CERN)
Roland Horisberger (PSI)
Installation and Infrastructure
Sylvain Weisz (CERN)
New Physics at Large Scales
Cristinel Diaconu (IN2P3 Marseille)
Gian Giudice (CERN)
Michelangelo Mangano (CERN)
Precision QCD and Electroweak
Guido Altarelli (Roma)
Vladimir Chekelian (MPI Munich)
Alan Martin (Durham)
Physics at High Parton Densities
Alfred Mueller (Columbia)
Raju Venugopalan (BNL)
Michele Arneodo (INFN Torino)

Published 600 pages conceptual design report (CDR) written by 150 authors from 60 Institutes. Reviewed by ECFA, NuPECC (long range plan), Referees invited by CERN. Published June 2012.
J.L.Abelleira Fernandez ${ }^{16,23}$, C.Adolphsen ${ }^{57}$, P.Adzic ${ }^{74}$, A.N.Akay ${ }^{03}$, H.Aksakal ${ }^{39}$, J.L.Albacete ${ }^{52}$, B.Allanach ${ }^{73}$, S.Alekhin ${ }^{17,54}$, P.Allport ${ }^{24}$, V.Andreev ${ }^{34}$, R.B.Appleby ${ }^{14,30}$, E.Arikan ${ }^{39}$, N.Armesto ${ }^{53, a}$, G.Azuelos ${ }^{33,64}$, M.Bai ${ }^{37}$, D.Barber ${ }^{14,17,24}$, J.Bartels ${ }^{18}$, O.Behnke ${ }^{17}$, J.Behr ${ }^{17}$, A.S.Belyaev ${ }^{15,56}$, I.Ben-Zvi ${ }^{37}$, N.Bernard ${ }^{25}$, S.Bertolucci ${ }^{16}$, S.Bettoni ${ }^{16}$, S.Biswal ${ }^{41}$, J.Blümlein ${ }^{17}$, H.Böttcher ${ }^{17}$, A.Bogacz ${ }^{36}$, C.Bracco ${ }^{16}$, J.Bracinik ${ }^{06}$, G.Brandt ${ }^{44}$, H.Braun ${ }^{65}$, S.Brodsky ${ }^{57, b}$, O.Brüning ${ }^{16}$, E.Bulyak ${ }^{12}$, A.Buniatyan ${ }^{17}$, H.Burkhardt ${ }^{16}$, I.T.Cakir ${ }^{02}$, O.Cakir ${ }^{01}$, R.Calaga ${ }^{16}$, A.Caldwell ${ }^{70}$, V.Cetinkaya ${ }^{01}$, V.Chekelian ${ }^{70}$, E.Ciapala ${ }^{16}$, R.Ciftci ${ }^{01}$, A.K.Ciftci ${ }^{01}$, B.A.Cole ${ }^{38}$, J.C.Collins ${ }^{48}$, O.Dadoun ${ }^{42}$, J.Dainton ${ }^{24}$, A.De.Roeck ${ }^{16}$, D.d'Enterria ${ }^{16}$, P.DiNezza ${ }^{72}$, M.D'Onofrio ${ }^{24}$, A.Dudarev ${ }^{16}$, A.Eide ${ }^{60}$, R.Enberg ${ }^{63}$, E.Eroglu ${ }^{62}$, K.J.Eskola ${ }^{21}$, L.Favart ${ }^{08}$, M.Fitterer ${ }^{16}$, S.Forte ${ }^{32}$, A.Gaddi ${ }^{16}$, P.Gambino ${ }^{59}$, H.García Morales ${ }^{16}$, T.Gehrmann ${ }^{69}$, P.Gladkikh ${ }^{12}$, C.Glasman ${ }^{28}$, A.Glazov ${ }^{17}$, R.Godbole ${ }^{35}$, B.Goddard ${ }^{16}$, T.Greenshaw ${ }^{24}$, A.Guffanti ${ }^{13}$, V.Guzey ${ }^{19,36}$, C.Gwenlan ${ }^{44}$, T. Han 50, Y. Hao 37, F.Haug ${ }^{16}$, W.Herr ${ }^{16}$, A.Hervé ${ }^{27}$, B.J.Holzer ${ }^{16}$, M.Ishitsuka ${ }^{58}$, M.Jacquet ${ }^{42}$, B.Jeanneret ${ }^{16}$, E.Jensen ${ }^{16}$, J.M.Jimenez ${ }^{16}$, J.M.Jowett ${ }^{16}$, H.Jung ${ }^{17}$, H.Karadeniz ${ }^{02}$, D.Kayran ${ }^{37}$, A.Kilic ${ }^{62}$, K.Kimura ${ }^{58}$, R.Klees ${ }^{75}$, M.Klein ${ }^{24}$, U.Klein ${ }^{24}$, T.Kluge ${ }^{24}$, F.Kocak ${ }^{62}$, M.Korostelev ${ }^{24}$, A.Kosmicki ${ }^{16}$, P.Kostka ${ }^{17}$, H.Kowalski ${ }^{17}$, M.Kraemer ${ }^{75}$, G.Kramer ${ }^{18}$, D.Kuchler ${ }^{16}$, M.Kuze ${ }^{58}$, T.Lappi ${ }^{21, c}$, P.Laycock ${ }^{24}$, E.Levichev ${ }^{40}$, S.Levonian ${ }^{17}$, V.N.Litvinenko ${ }^{37}$, A.Lombardi ${ }^{16}$, J.Maeda ${ }^{58}$, C.Marquet ${ }^{16}$, B.Mellado ${ }^{27}$, K.H.Mess ${ }^{16}$, A.Milanese ${ }^{16}$, J.G.Milhano ${ }^{76}$, S.Moch ${ }^{17}$, I.I.Morozov ${ }^{40}$, Y.Muttoni ${ }^{16}$, S.Myers ${ }^{16}$, S.Nandi ${ }^{55}$, Z.Nergiz ${ }^{39}$, P.R.Newman ${ }^{06}$, T.Omori ${ }^{61}$, J.Osborne ${ }^{16}$, E.Paoloni ${ }^{49}$, Y.Papaphilippou ${ }^{16}$, C.Pascaud ${ }^{42}$, H.Paukkunen ${ }^{53}$, E.Perez ${ }^{16}$, T.Pieloni ${ }^{23}$, E.Pilicer ${ }^{62}$, B.Pire ${ }^{45}$, R.Placakyte ${ }^{17}$, A.Polini ${ }^{07}$, V.Ptitsyn ${ }^{37}$, Y.Pupkov ${ }^{40}$, V.Radescu ${ }^{17}$, S.Raychaudhuri ${ }^{35}$, L.Rinolfi ${ }^{16}$, E.Rizvi ${ }^{71}$, R.Rohini ${ }^{35}$, J.Rojo ${ }^{16,31}$, S.Russenschuck ${ }^{16}$, M.Sahin ${ }^{03}$, C.A.Salgado ${ }^{53, a}$, K.Sampei ${ }^{58}$, R.Sassot ${ }^{09}$, E.Sauvan ${ }^{04}$, M.Schaefer ${ }^{75}$, U.Schneekloth ${ }^{17}$, T.Schörner-Sadenius ${ }^{17}$, D.Schulte ${ }^{16}$, A.Senol ${ }^{22}$, A.Seryi ${ }^{44}$, P.Sievers ${ }^{16}$, A.N.Skrinsky ${ }^{40}$, W.Smith ${ }^{27}$, D.South ${ }^{17}$, H.Spiesberger ${ }^{29}$, A.M.Stasto ${ }^{48, d}$, M.Strikman ${ }^{48}$, M.Sullivan ${ }^{57}$, S.Sultansoy ${ }^{03, e}$, Y.P.Sun ${ }^{57}$, B.Surrow ${ }^{11}$, L.Szymanowski ${ }^{66, f}$, P.Taels ${ }^{05}$, I.Tapan ${ }^{62}$, T.Tasci ${ }^{22}$, E.Tassi ${ }^{10}$, H.Ten.Kate ${ }^{16}$, J.Terron ${ }^{28}$, H.Thiesen ${ }^{16}$, L.Thompson ${ }^{14,30}$, P.Thompson ${ }^{06}$, K.Tokushuku ${ }^{61}$, R.Tomás García ${ }^{16}$, D.Tommasini ${ }^{16}$, D.Trbojevic ${ }^{37}$, N.Tsoupas ${ }^{37}$, J.Tuckmantel ${ }^{16}$, S.Turkoz ${ }^{01}$, T.N.Trinh ${ }^{47}$, K.Tywoniuk ${ }^{26}$, G.Unel ${ }^{20}$, T.Ullrich ${ }^{37}$, J.Urakawa ${ }^{61}$, P.VanMechelen ${ }^{05}$, A.Variola ${ }^{52}$, R.Veness ${ }^{16}$, A.Vivoli ${ }^{16}$, P.Vobly ${ }^{40}$, J.Wagner ${ }^{66}$, R.Wallny ${ }^{68}$, S.Wallon ${ }^{43,46, f}$, G.Watt ${ }^{69}$, C.Weiss ${ }^{36}$, U.A.Wiedemann ${ }^{16}$, U.Wienands ${ }^{57}$, F.Willeke ${ }^{37}$, B.-W.Xiao ${ }^{48}$, V.Yakimenko ${ }^{37}$, A.F.Zarnecki ${ }^{67}$, Z.Zhang ${ }^{42}$, F.Zimmermann ${ }^{16}$, R.Zlebcik ${ }^{51}$, F.Zomer ${ }^{42}$

LHeC Physics Programme

CDR, arXiv:1211.4831 and 5102
http://cern.ch/lhec

QCD Discoveries	$\alpha_{s}<0.12, q_{\text {sea }} \neq \bar{q}$, instanton, odderon, low $x:$ (n0) saturation, $\bar{u} \neq \bar{d}$
Higgs	$W W$ and $Z Z$ production, $H \rightarrow b \bar{b}, H \rightarrow 4 l$, CP eigenstate
Substructure	electromagnetic quark radius, $e^{*}, \nu^{*}, W ?, Z ?$, top?, $H ?$
New and BSM Physics	leptoquarks, RPV SUSY, Higgs CP, contact interactions, GUT through α_{s}
Top Quark	top PDF, $x t=x \bar{t}$?, single top in DIS, anomalous top
Relations to LHC	SUSY, high x partons and high mass SUSY, Higgs, LQs, QCD, precision PDFs
Gluon Distribution	saturation, $x \overline{\sim 1, J / \psi, \Upsilon, \text { Pomeron, local spots?, } F_{L}, F_{2}^{c}}$
Precision DIS	$\delta \alpha_{s} \simeq 0.1 \%, \delta M_{c} \simeq 3 \mathrm{MeV}, v_{u, d}, a_{u, d}$ to $2-3 \%, \sin ^{2} \Theta(\mu), F_{L}, F_{2}^{b}$
Parton Structure	Proton, Deuteron, Neutron, Ions, Photon
Quark Distributions	valence $10^{-4} \lesssim x \lesssim 1$, light sea, $d / u, s=\bar{s}$?, charm, beauty, top
QCD	N^{3} LO, factorisation, resummation, emission, AdS/CFT, BFKL evolution
Deuteron	singlet evolution, light sea, hidden colour, neutron, diffraction-shadowing
Heavy Ions	initial QGP, nPDFs, hadronization inside media, black limit, saturation
Modified Partons	PDFs "independent" of fits, unintegrated, generalised, photonic, diffractive
HERA continuation	$F_{L}, x F_{3}, F_{2}^{\gamma Z}$, high x partons, α_{s}, nuclear structure, ..

Ultra high precision (detector, e-h redundancy)

- new insight
Maximum luminosity and much extended range
- rare, new effects
Deep relation to (HL-) LHC (precision+range)
- complementarity

Strong coupling 0.1%; Full unfolding of PDFs; Gluon: low x : saturation?, high x : HL LHC searches...

CDR: Physics, Accelerator, Detector

JPhysG:39(2012)075001, arXiv:1206.2913 http://cern.ch/lhec
CDR: default design. $60 \mathrm{GeV} . \mathrm{L}=10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}, \mathrm{P}<100 \mathrm{MW} \rightarrow$ ERL, synchronous ep/pp 5

After the Higgs discovery: LHeC $10^{33} \rightarrow 34$ Luminosity (parameters in parenthesis) Turn the LHeC into a Higgs factory

parameter [unit]	LHeC	
species	e^{-}	$p,{ }^{208} \mathrm{~Pb}^{82+}$
beam energy (/nucleon) [GeV]	60	7000,2760
bunch spacing [ns]	25,100	25,100
bunch intensity (nucleon) $\left[10^{10}\right]$	$0.1(0.2), 0.4$	$17(22), 2.5$
beam current [mA]	$6.4(12.8)$	$860(1110), 6$
rms bunch length [mm]	0.6	75.5
polarization [\%]	90	none, none
normalized rms emittance [$\mu \mathrm{m}]$	50	$3.75(2.0), 1.5$
geometric rms emittance [nm]	0.43	$0.50(0.31)$
IP beta function $\beta_{x, y}^{*}[\mathrm{~m}]$	$0.12(0.032)$	$0.1(0.05)$
IP spot size [$\mu \mathrm{m}]$	$7.2(3.7)$	$7.2(3.7)$
synchrotron tune Q_{s}	$-0.0001(0.0002)$	
hadron beam-beam parameter	$6(30)$	
lepton disruption parameter D	$0($ detector-integrated dipole)	
crossing angle	$0.91(0.67)$	
hourglass reduction factor $H_{h g}$	1.35	
pinch enhancement factor H_{D}	1300,810	
CM energy [TeV]	$1(10), 0.2$	
luminosity / nucleon $\left[10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right.$]		

Table 1: LHeC $e p$ and $e A$ collider parameters. The numbers give the default CDR values, with optimum values for maximum $e p$ luminosity in parentheses and values for the $e P b$ configuration separated by a comma.

LHeC Collaboration arXiv:1211:5102, see also O.Bruening and M.Klein arXiv:1305.2090

Some LHeC Context

The LHeC is not the first proposal for TeV scale DIS, but it is the first with the potential for significantly higher luminosity than HERA ...

... achievable with a new electron accelerator at the LHC ...
[JINST 1 (2006) P10001]

The LHeC Detector

P. Kostka

LHeC Kinematics and the LHC

d/u at large x

Lead motivation for a LHeC: pdfs at high \times for discovery physics

Gluon Density Distribution

Spectacular increase in the precision of gluon density function at high x. This is important for discovery physics at the LHC
M.Klein NNLO pp-Higgs Cross Sections at 14 TeV

Calculated for scale of $\mathrm{M}_{\mathrm{H}} / 2$

Exp uncertainty of LHeC Higgs cross section is 0.25% (sys+sta), using LHeC only.

Leads to mass sensitivity..

Strong coupling underlying parameter (0.005-10\%).

LHeC: 0.0002

Needs N^{3} LO

HQ treatment important

PRECISION $\sigma(H)$

Higgs production (gg) at the LHC is $\propto \alpha_{s}^{2}\left(M_{H}^{2}\right) x G\left(x, M_{H}^{2}\right) \otimes x G\left(x, M_{H}^{2}\right)$
Bandurin (ICHEP12) Higgs physics at the LHC is limited by the PDF knowledge

Higgs at LHeC

At LHC replace
lepton lines by quark lines
DIt is remarkable that VBF diagrams were calculated for lepton nucleon collisions before for pp!
\square Consider feasibility for the following point:

$$
E_{p}=7 \mathrm{TeV}, \quad E_{e}=140 \mathrm{GeV}, \quad M_{H}=120 \mathrm{GeV}
$$

Higgs via VBF Qualitative remarks

$$
\begin{aligned}
& \sigma\left(f a \rightarrow f^{\prime} X\right) \approx \int d x d p_{T}^{2} P_{V / f}\left(x, p_{T}^{2}\right) \sigma(V a \rightarrow X) \\
& P_{V / f}^{T}\left(x, p_{T}^{2}\right)=\frac{g_{V}^{2}+g_{V}^{2}}{8 \pi^{2}} \frac{1+(1-x)^{2}}{x} \frac{p_{T}^{2}}{\left(p_{T}^{2}+(1-x) M_{V}^{2}\right)^{2}} \\
& P_{V / f}^{L}\left(x, p_{T}^{2}\right)=\frac{g_{V}^{2}+g_{V}^{2}}{4 \pi^{2}} \frac{1-x}{x} \frac{(1-x) M_{V}^{2}}{\left(p_{T}^{2}+(1-x) M_{V}^{2}\right)^{2}} .
\end{aligned}
$$

-Unlike QCD partons that scale like 1/PT ${ }^{2}$, here $\mathbf{P}_{\mathbf{T}} \sim \mathbf{s q r t}(1-x) \mathbf{M}_{\mathbf{W}}$

- Due to the $1 / x$ behavior of the Weak boson the outgoing parton energy (1-x)E is large \rightarrow forward jets
\square At high $\mathbf{P}_{\mathbf{T}} \quad P_{V / f}^{T} \sim 1 / p_{T}^{2}$ and $P_{V / f}^{L} \sim 1 / p_{T}^{4}$:
\square Contribution from Iongitudinally polarized Weak Bosons is suppressed in favor of transversely polarized WB at high $\mathbf{p}_{\mathbf{T}}$

Cross-Sections

\square Used Madgraph and CTEQ6L for e-p scattering

aSet scales to $\mathbf{M}_{\mathbf{H}}$. Little scale dependence

Charge Current Analysis

T.Han \& BM Phys.Rev.D82:016009,2010.

MC Samples in Hadron-level study

U.Klein et al.

$\mathrm{LH}_{\mathrm{C}} \mathrm{H} \rightarrow \mathbf{b} \overline{\mathbf{b}}$ results updated
 [after Higgs discovery $\mathrm{M}_{\mathrm{H}}=125 \mathrm{GeV}, \mathrm{E}_{\mathrm{O}}=7 \mathrm{TeV}$]

U.Klein

- Case study for electron beam energy of 60 GeV using same analysis strategy
- luminosity values of $50 \mathrm{fb}^{-1} \rightarrow$ with high luminosity LHeC $100 \mathrm{fb}^{-1} /$ year would be

Masahiro Tanaka, BSc thesis, Tokyo Tech 2014

H \rightarrow bb signal 175
$\begin{array}{ll}\mathrm{S} / \mathrm{N} & 1.9\end{array}$
S/VN
18.1

- Electron energy recovery LINAC with high electron polarisation of $\mathbf{8 0 \%}$ and $\mathbf{1 0}^{\mathbf{3 4}} \mathbf{~ c m}^{\mathbf{- 2}} \mathbf{~ s}^{\mathbf{- 1}}$ \rightarrow enhancement by factor 20*1.8 feasible, i.e. around 6300 Higgs candidates for $\mathrm{E}_{\mathrm{e}}=60$ GeV allowing to measure Hbb coupling with $\sim 0.5 \%-1 \%$ statistical precision.

From Higgs facility (LHeC) to Higgs 'factory' (FCC-

Higgs in $e^{-} p$	CC - LHeC	NC - LHeC	CC - FHeC
Polarisation	-0.8	-0.8	-0.8
Luminosity [ab^{-1}]	1	1	5
Cross Section [fb]	196	25	850
Decay BrFraction	$\mathrm{N}_{C C}^{H}$	$\mathrm{N}_{N C}^{H}$	$\mathrm{N}_{C C}^{H}$
$H \rightarrow b \bar{b} \quad 0.577$	113100	13900	2450000
$H \rightarrow c \bar{c} \quad 0.029$	5700	700	123000
$H \rightarrow \tau^{+} \tau^{-} \quad 0.063$	12350	1600	270000
$H \rightarrow \mu \mu \quad 0.00022$	50	5	1000
$H \rightarrow 4 l$ 0.00013	30	3	550
$H \rightarrow 2 l 2 \nu \quad 0.0106$	2080	250	45000
$H \rightarrow g g \quad 0.086$	16850	2050	365000
$H \rightarrow W W \quad 0.215$	42100	5150	915000
$H \rightarrow Z Z \quad 0.0264$	5200	600	110000
$H \rightarrow \gamma \gamma \quad 0.00228$	450	60	10000
$H \rightarrow Z \gamma \quad 0.00154$	300	40	6500

M.KIein

Cross section 1pb ep $\rightarrow \mathrm{vHX}$

Luminosity
> 10^{34} crucial for $\mathrm{H} \rightarrow \mathrm{HH}$ 0.5 fb and rare decays

First sets of
Parameters for LR and RR

Status of di-tau Feasibility

\square Looks like the following combinations will work Dmu+ tau_had
Dmu- tau_had
Dtau_had tau_had
De+ mu-
Dmu+mu- (?)

\square The main background will come from di-tau production. This is a good start.
\square Next step is to look into the prospects of fakes, although if these channels are possible at the LHC, they have to be possible at the LHeC.
\square Need to look into NC production of taus

CP Structure of HVV Couplings

Higgs Couplings with pair of gauge bosons ($Z Z / W W$) and the pair of heavy fermions (t / τ) are largest. Study $Q P$ in a model independent way (most studies so far)

$$
H f \bar{f}:-\frac{g m_{f}}{2 M_{W}} \bar{f}\left(a_{f}+i b_{f} \gamma_{5}\right) f H
$$

HVV:

$$
\Gamma_{\mu \nu}^{\mathrm{SM}}=-g M_{V} g_{\mu \nu}
$$

$\Gamma_{\mu \nu}^{\mathrm{BSM}}(p, q)=\frac{g}{M_{V}}\left[\lambda\left(p \cdot q g_{\mu \nu}-p_{\nu} q_{\mu}\right)+\lambda^{\prime} \epsilon_{\mu \nu \rho \sigma} p^{\rho} q^{\sigma}\right]$
S. Biswal, R. Godbole, B.M. and a S. Raychaudhuri Phys.Rev.Lett. 109 (2012) 261801

SAPPHiRE: a Small $\gamma \gamma$ Higgs Factory

A photon-photon collider can be associated to LHeC effort
S. A. Bogacz ${ }^{1}$, J. Ellis ${ }^{2,3}$, L. Lusito ${ }^{4}$, D. Schulte ${ }^{3}$, T. Takahashi ${ }^{5}$, M. Velasco ${ }^{4}$, M. Zanetti ${ }^{6}$ and F. Zimmermann ${ }^{3}$

Strong potential to measure CP mixing and violation thanks to control over photon polarization

drive beam accelerator

decay mode	raw events/year	S / B	$\epsilon_{\text {sel }}$	$\mathcal{B} \mathcal{R}$	$\Delta \Gamma_{\gamma \mathcal{}} \mathcal{B} \mathcal{R} / \Gamma_{\gamma \gamma} \mathcal{B} \mathcal{R}$
$\overline{b b}$	11540	4.5	0.30	57.7%	2%
$W^{+} W^{-}$	4300	1.3	0.29	21.5%	5%
$\gamma \gamma$	45	-	0.70	0.23%	8%

Double Higgs Production with a 50 TeV Proton Beam

In the light of the FCC kick-off meeting, we are evaluating feasibility of double Higgs production with a 50 TeV beam. Electron-proton collisions offer the advantage of reduced QCD backgrounds and negligible pile-up with the possibility of using the 4b final state.

Feynman rules for the interactions of the scalar boson with gauge bosons, fermions and self-interactions.

Gauge	Self-interaction	Fermion
$H W_{\mu}^{+} W_{\nu}^{-}:\left(-i g_{\mu \nu}\right) 2 \frac{m_{W}^{2}}{m_{Z}^{\nu}}$	$H H H:(i) 3 \frac{m_{H}^{2}}{\nu}$	$H \bar{f} f:(i) \frac{m_{f}}{\nu}$
$H Z_{\mu} Z_{\nu}:\left(-i g_{\mu \nu}\right) 2 \frac{2_{\nu}^{\nu}}{\nu}$	$H H H H:(i) 3 \frac{m_{H}^{2}}{\nu^{2}}$	
$H H W_{\mu}^{+} W_{\nu}^{-}:\left(-i g_{\mu \nu}\right) 2 \frac{m_{W}^{2}}{L^{2}}$		
$H H Z_{\mu} Z_{\nu}:\left(-i g_{\mu \nu}\right) 2 \frac{m_{Z}^{2}}{\nu^{2}}$		

Exploring the feasibility of the HHH coupling via double-Higgs boson production

LH_{e} Total Higgs cross sections

HH and tht in ep

Processes	$E_{e}(\mathrm{GeV})$	$\sigma(\mathrm{fb})$	$\sigma_{\text {eff }}(\mathrm{fb})$
$e^{-} p \rightarrow \nu_{e} h h j, h \rightarrow b \bar{b}$	60	0.04	0.01
	120	0.10	0.024
	150	0.14	0.034

Polarisation, max lumi, tuning cuts, bb and WW decays may provide $O(10 \%$) precision - tentative
total : 0.7 fb
fiducial : 0.2 fb
using $\mathrm{pt}(\mathrm{b}, \mathrm{j})>20 \mathrm{GeV}$
$\Delta R(j . b)>0.4$
$n(j)<5$
$n(b)<3$
Require time for reliable result (detector, analysis, backgrounds..)

Bruce Mellado, Uta Klein, Masahiro Khuze et a

Cross-sections for CC HH->4b (branching ratios included) For unpolarized electron beam

Processes	$E_{e}(\mathrm{GeV})$	$\sigma(\mathrm{fb})$	$\sigma_{e f f}(\mathrm{fb})$	$p_{T_{j, b}}>20 \mathrm{GeV}$
$e^{-} p \rightarrow \nu_{e} h h j, h \rightarrow b \bar{b}$	60	0.04	0.01	$\begin{gathered} \mathbb{E}_{T}>25 \mathrm{GeV} \\ \left\|\eta_{j}\right\|<5, \Delta R=0.4 \end{gathered}$
	120	0.10	0.024	
	150	0.14	0.034	

Cross-sections for CC backgrounds in fb for $\mathrm{E}_{\mathrm{e}}=\mathbf{6 0 , 1 2 0 , 1 5 0} \mathbf{G e V}$

Processes	$E_{e}=60 \mathrm{GeV}$		$E_{e}=120 \mathrm{GeV}$		$E_{e}=150 \mathrm{GeV}$	
	$\sigma(\mathrm{fb})$	$\sigma_{e f f}(\mathrm{fb})$	$\sigma(\mathrm{fb})$	$\sigma_{e f f}(\mathrm{fb})$	$\sigma(\mathrm{fb})$	$\sigma_{e f f}(\mathrm{fb})$
$e^{-} p \rightarrow \nu_{e} b \bar{b} b \bar{b} j$	0.086	0.022	0.14	0.036	0.15	0.038
$e^{-} p \rightarrow \nu_{e} b \bar{b} c \bar{c} \bar{j} j$	0.12	1.7×10^{-5}	0.36	1.8×10^{-3}	0.44	2.2×10^{-3}
$e^{-} p \rightarrow \nu_{e} c \bar{c} c \bar{c} j$	0.20	1.0×10^{-6}	0.24	3.4×10^{-5}	0.31	4.3×10^{-5}
$e^{-} p \rightarrow \nu_{e} b \bar{b} j j j$	26.1	3.9×10^{-3}	54.2	0.008	67.5	0.01
$e^{-} p \rightarrow \nu_{e} c \bar{c} j j j$	29.6	9.5×10^{-5}	66.9	2.0×10^{-4}	85.4	2.7×10^{-4}
$e^{-} p \rightarrow \nu_{e} j j j j j$	823.6	4.1×10^{-5}	1986	9.9×10^{-5}	2586	1.3×10^{-4}

Results promising at parton level, giving comparable signal and background crosssections even before topological requirements.
Looking forward to the particle-level study.

Results assume 70\% b-tagging efficiency, 0.1 (0.01) fake rates for \mathbf{c} (light) jets 30

Further Path Determined with IAC Mandate

M.KIein

The IAC was invited in $12 / 13$ by the DG with the following

Mandate 2014-2017

Advice to the LHeC Coordination Group and the CERN directorate by following the development of options of an ep/eA collider at the LHC and at FCC, especially with:

Provision of scientific and technical direction for the physics potential of the ep/eA collider, both at LHC and at FCC, as a function of the machine parameters and of a realistic detector design, as well as for the design and possible approval of an ERL test facility at CERN.

Assistance in building the international case for the accelerator and detector developments as well as guidance to the resource, infrastructure and science policy aspects of the ep/eA collider.
*) IAC Composition End of January 2014 + Oliver Brüning Max Klein ex officio

Coordination Group for Future DIS at CERN

M.KIein

LCG (2014-2017)
Nestor Armesto
Oliver Brüning
Stefano Forte
Andrea Gaddi
Bruce Mellado
Max Klein
Peter Kostka
Daniel Schulte
Frank Zimmermann
Directors (ex-officio)
Sergio Bertolucci, Frederick Bordry

The coordination group was invited end of December 2013 by the CERN directorate with the following mandate (2014-2017)

> The group has the task to coordinate the study of the scientific potential and possible technical realisation of an ep/eA collider and the associated detectors at CERN, with the LHC and the FCC, over the next four years. It also should coordinate the design of an ERL test facility at CERN as part of the preparations for a larger energy electron accelerator employing ERL techniques.
> The group will cooperate with CERN and an International Advisory Committee, chaired by the emeritus DG of CERN, Professor Herwig Schopper, who also advises the CERN directorate. The Coordination Group is asked to represent the ep/eA collider development towards CERN, its committees and the international community. The currently tentative composition is listed left. CERN has asked Max Klein to chair and Oliver Brüning to co-chair this activity
*) LCG Composition early January 14

Outlook and Conclusions

-LHeC displays strong complementarities with the LHC/e'e- with regards to Higgs physics
DForward jet tagging secures the feasibility of the Higgs search in CC and NC in ep collisions
\square With the isolation of the $\mathbf{H \rightarrow b b}$ signal at the LHeC a window of opportunity opens for the exploration of the CP properties of the HWW and HZZ vertexes
\square The latter is a unique feature of the ep collider absent in pp/e ${ }^{+}$e- collisions
\square Exploring high lumi scenarios \rightarrow Higgs factory
aThe LHeC removes the PDF/QCD uncertainties for pp: LHeC becomes precision Higgs facility
DExploring double Higgs production in the contex of FCC. Promissing results at parton level to be evaluated at hadron level
DIAC and Coordination group with new mandate

Extra Slides

How Could ep be Done using LHC?

... whilst allowing simultaneous ep and pp running...

RING-RING

- First considered (as LEPxLHC) in 1984 ECFA workshop
- Main advantage: high peak lumi obtainable $\left(\sim 2.10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$
- Main difficulties: building round existing LHC, e beam energy (60 GeV ?) and lifetime limited by synchrotron radiation

- Previously considered as `QCD explorer' (also THERA)
- Main advantages: low interference with LHC , high $\mathrm{E}_{e}(\rightarrow 150 \mathrm{GeV}$?) and lepton polarisation
- Somewhat lower luminosity at reasonable power, no previous experience exists

$\mathrm{LH}_{\mathrm{C}} \mathrm{C}$ Kinematic distributions

$\left[M_{H}=120 \mathrm{GeV}, \mathrm{E}_{\mathrm{e}}=150 \mathrm{GeV}, \mathrm{E}_{\mathrm{p}}=7 \mathrm{TeV}\right.$]
a-b) Kinematic distributions of generated Higgs c-d) Reconstructed y_{JB} and $\mathrm{Q}^{2}{ }_{\mathrm{JB}}$

a)
$\mathbf{p}_{\mathrm{T}}{ }^{\mathbf{H}}[\mathrm{GeV}]$

c)

b)

Generated events passed to Pythia and to generic LHC-style detector:

- Coverage:
- Tracking: $\quad|\eta|<3$
- Calorimeter: $|\eta|<5$
- Calorimeter resolution
- EM: $\quad 1 \% \oplus 5 \% / V E$
- Hadron: 60\%/VE
- Cell size: $(\Delta \eta, \Delta \phi)=(0.03,0.03)$
- Jet reconstructed (cone $\Delta R=0.7$)
- b-tag performance
- Flat efficiency for $|\boldsymbol{\eta}|<3$
- Efficiency/mis-ID
b-jet: 60\%
c-jet: 10\%
Other jets: 1\%

LH_{C} Selection of $\mathbf{H} \rightarrow \mathbf{b} \overline{\mathbf{b}}$

- NC rejection

- Higgs invariant mass
- $90<M_{H}<120 \mathrm{GeV} \Rightarrow 44 \%$ of remaining $B G$ is single-top...
- Single top rejection
- $\mathrm{M}_{\mathrm{jij}, \mathrm{top}}>250 \mathrm{GeV}$
- $M_{\mathrm{j}, \mathrm{w}}>130 \mathrm{GeV}$

ICHEP2012, Uta Klein, Higgs@LHeC

$\mathrm{LH}_{\mathrm{C}} \mathrm{H} \rightarrow \mathbf{b} \overline{\mathrm{b}}$ results

$$
\left[\mathrm{M}_{\mathrm{H}}=120 \mathrm{GeV}, \mathrm{E}_{\mathrm{p}}=7 \mathrm{TeV}\right]
$$

- Forward jet tagging - $\eta_{\text {jet }}>2$ (lowest η jet excluding b-tagged jets)

Coordinate:
Fwd: +z-axis along proton beam

- Higgs invariant mass after all selection

$$
\mathrm{E}_{\mathrm{e}}=150 \mathrm{GeV}
$$

Expect $5000 \mathrm{H} \rightarrow$ bb events at 60 GeV for $1 a b^{-1} \rightarrow 0.7 \%$ coupling measurement at $S / B \sim 1$.
\rightarrow LHeC is high precision Higgs facility

ICHEP2012, Uta Klein, Higgs@LHeC

Clear signal obtained with just cut based analysis already!

Case Study for $\mathrm{M}_{\mathrm{H}}=120 \mathrm{GeV}$

a Measure deviation of the Higgs production with respect to the SM using the absolute rate of events
a The ratio of the number of events in region B to that of region A in the $\Delta \varphi_{M E T, J}$ spectrum

CP-odd case

a Assume Gaussian errors and the following systematics:

- 10% on the background rate
- 5% on the shape of the $\Delta \varphi_{M E T, J}$ in background
- 5\% on the rate of the SM Higgs
- Evaluating theoretical error on $\Delta \varphi_{M E T, J}$ shape

Signal Efficiency for Different $E_{\mathbf{e}}$

-First row: Cumulative efficiency
aSecond row: Efficiency w.r.t. previous cut

Cut	$E_{e}=50$	$E_{e}=100$	$E_{e}=140$	$E_{e}=200$
\mathbf{a}	0.129	0.157	0.166	0.171
	-	-	-	-
\mathbf{b}	0.109	0.127	0.132	0.136
	0.84	0.81	0.80	0.80
\mathbf{c}	0.076	0.090	0.093	0.095
	0.70	0.71	0.70	0.70
\mathbf{d}	0.050	0.067	0.073	0.078
	0.66	0.75	0.79	0.82

Effect of Jet Energy Resolution

Effect of Range of b-tagging

		CC				Photo-prod.	
Cuts	Higgs	$t \bar{b}$	$b \bar{b} j$	$j j j$	$b \bar{b} j$	$t \bar{t}$	S / B
\mathbf{a}	30.23	174.51	94.51	4.15	7.03	2.74	0.11
b	24.41	22.74	2.68	0.39	0.67	0.32	0.91
c	17.08	9.51	1.57	0.13	0.25	0.18	1.47
d	13.15	1.65	1.01	0.05	0.14	0.04	4.55

Effect of Jet $\mathbf{P}_{\mathbf{T}}$

		CC			Photo-prod.		
Cuts	Higgs	$t \bar{b}$	$b \bar{b} j$	$j j j$	$b \bar{b} j$	$t \bar{t}$	S / B
a	33.48	208.46	134.97	5.85	8.12	2.62	0.09
b	26.52	24.90	2.91	0.47	0.88	0.30	0.90
c	21.47	10.16	1.79	0.26	0.42	0.16	1.68
d	16.24	1.71	1.18	0.10	0.32	0.04	4.84

Signal Efficiency for Different $E_{\mathbf{e}}$

-First row: Cumulative efficiency
aSecond row: Efficiency w.r.t. previous cut

Cut	$E_{e}=50$	$E_{e}=100$	$E_{e}=140$	$E_{e}=200$
\mathbf{a}	0.129	0.157	0.166	0.171
	-	-	-	-
\mathbf{b}	0.109	0.127	0.132	0.136
	0.84	0.81	0.80	0.80
\mathbf{c}	0.076	0.090	0.093	0.095
	0.70	0.71	0.70	0.70
\mathbf{d}	0.050	0.067	0.073	0.078
	0.66	0.75	0.79	0.82

Results on the sensitivity with updated background as per the simulations of U. Klein (DIS 2011)

URL: http://www.ep.ph.bham.ac.uk/exp/LHeC/talks/DIS11.Klein2.pdf

higgs +2 jets: VBF (LHC), higgs + jet + missing $E_{T}(\mathrm{LHeC})$

$e p$ process uniquely addresses the $H W W$ vertex.
Need to investigate physics beyond the SM within the 0^{+} hypothesis with high precision

Study by Zeppenfeld et al:

Study in pp collisions

Left plot: VBF, CP even and CP odd refer to the dimension 5 operator.

For gluon fusion the angular distribution is decided by the CP property of the $t \bar{t} H$ coupling.

Case Study for $\mathrm{M}_{\mathrm{H}}=120 \mathrm{GeV}$

- Measure deviation of the Higgs production with respect to the SM using the absolute rate of events
a The ratio of the number of events in region B to that of region A in the $\Delta \varphi_{M E T, J}$ spectrum

CP-odd case

a Assume Gaussian errors and the following systematics:

- 10% on the background rate
- 5% on the shape of the $\Delta \varphi_{M E T, J}$ in background
- 5\% on the rate of the SM Higgs
- Evaluating theoretical error on $\Delta \varphi_{M E T, J}$ shape

Effect of PDF uncertainties and pdf choice

$\gamma \gamma$ Ideal To Measure CP Mixing and Violation

The LHC will tell us the SPIN and Parity of the Higgs.
Higgs factories should go beyond...
M.Velasco
M.Velasco

Circurly

ζ_{2} is the degree of circular polarization
$\left(\zeta_{3}, \zeta_{1}\right)$ are the degrees of linear polarization
ζ_{2} is the degree of circular polarization $\left(\zeta_{3}, \zeta_{1}\right)$ are the degrees of linear polarization

In s-channel production of Higgs:

$$
\begin{aligned}
& \overline{\left|\mathcal{M}^{H_{i}}\right|^{2}}=\overline{\left|\mathcal{M}^{H_{i}}\right|_{0}^{2}}\left\{\left[1+\zeta_{2} \tilde{\zeta}_{2}\right]+\mathcal{A}_{1}\left[\zeta_{2}+\tilde{\zeta}_{2}\right]+\mathcal{A}_{2}\left[\zeta_{1} \tilde{\zeta}_{3}+\zeta_{3} \tilde{\zeta}_{1}\right]-\mathcal{A}_{3}\left[\zeta_{1} \tilde{\zeta}_{1}-\zeta_{3} \tilde{\zeta}_{3}\right]\right\} \\
& ==0 \text { if CP is conserved } \begin{array}{l}
==+1(-1) \text { for CP is conserved } \\
\text { forA CP -Even (CP-Odd) Highs }
\end{array}
\end{aligned}
$$

\Longrightarrow If $\mathcal{A}_{1} \neq 0, \mathcal{A}_{2} \neq 0$ and/or $\left|\mathcal{A}_{3}\right|<1$, the Higgs is a mixture of CP-Even and CP-Odd states

Possible to search for CP violation in

$g g \rightarrow \mathrm{H} \rightarrow$ fermions without having to measure their polarizatio
In $b b, a \leq 1 \%$ asymmetry can be measure with $100 \mathrm{fb}^{-1}$ that is, in $1 / 2$ years arXiv:0705.1089v2

Kinematic Distributions (Ee = 60 GeV)

Despite large beam energy imbalance, jets are relatively central

This is a important discriminator
to distinguish EW from QCD
multi-jet production
Scattered quark is more forward in signal

